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An explanation of the mechanism for the fingering instability at driven contact lines is presented.
Semiquantitative predictions for the growth of the fingers as a function of time, the most unstable wave-
length, and the initial growth rate are deduced. These predictions are consistent with recent experiments

of de Bruyn [Phys. Rev. A 46, R4500 (1992)].
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Driven contact lines appear in numerous applications
where a solid surface is coated with a thin layer of
viscous fluid [1]. Experiments on such systems have
shown [2-6] that when a contact line is driven by a con-
stant force, the fluid interface is unstable and breaks up
into fingers. The instability presents a practical problem
as it disrupts the uniform coating of the solid surface. It
also raises theoretical issues involving the dynamics of
contact lines, for the shape of the fingers depends on the
fluid characteristics.

The instability has been studied experimentally for flow
down an inclined plane [2,3,5,6] and flow on a rotating
table [4]. Theoretical efforts have mainly focused on
characterizing the base state of the flow, before the insta-
bility. Huppert [2] characterized the outer region, far
from the contact line. The inner region was first de-
scribed correctly by Troian et al. [7] and by Hocking [8];
more rigorous descriptions have since been given by
Moriarty, Schwartz, and Tuck [9] and by Goodwin and
Homsy [10]. The instability of the base state in the gravi-
tational case has been addressed by Troian et al. [7], who
suggest that it is linearly unstable. However, their theory
applies in a parameter regime outside the range of recent
experiments. No theoretical discussion of late-time-flow
characteristics of the fingers has been given.

In this paper, I present a physical picture of the mech-
anism that causes the instability. The argument suggests
that the growth of the fingers is driven by macroscopic
flows, and is not significantly influenced by contact-line
dynamics. Moreover, the picture predicts many charac-
teristics of the flow. Focusing on the gravity-driven case,
I extend the results of Troian et al. [7] to the parameter
range of recent experiments. At early times, the finger
length grows exponentially, and at later times, the growth
is linear. The most unstable wavelength and the initial
growth rate of the perturbation are also predicted. The
results are consistent with recent experiments of de
Bruyn [6].

The geometry of the problem is depicted in Fig. 1. The
hydrodynamic equation for the height A (x,y,t) of the
fluid is [11]

3uh, +V-[yh3V(V2h)—pg cos(a)h*Vh +pg sin(a)h %]
=0. (1)
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The derivation of the equation uses a lubrication approxi-
mation of the Navier-Stokes equation, neglecting the
inertial terms. These approximations are appropriate for
thin films of viscous fluid. Here, u is the viscosity of the
fluid, p is the fluid density, y is the surface tension, g is
the gravitational acceleration, and « is the inclination an-
gle of the plane. The fluid is initially arranged so that the
contact line is straight. After the flow begins, the height
profile develops two regions. The outer region, far from
the contact line, is described by a similarity solution of (1)
where the pg sin(a)h® term dominates [2]. The length of
this region, x, increases like t'/3 and the thickness de-
creases like ¢ ~!/2. Volume conservation implies that the
outer solution ends abruptly with a height H.

Near xy, the edge of the outer region, the profile is
smoothed by surface tension. Troian et al. [7] computed
a solution in this inner region by assuming that the outer
region is quasisteady, and then finding a solution moving
at the velocity U =%y [12]. The most important feature
of their solution is that there is a characteristic “bump”
near the contact line (see Fig. 1). Furthermore, their
solution suggests the following scalings for flows in the
inner region:

h=hH)y ,
(x,y)=(xLyl) , (2)
t=t(l/U) .

Here, I =H,, /(3Ca)!/3, where Ca=pnU /v is the capillary
number. When expressed in terms of these units, the
height and width of the base profile remain nearly con-

FIG. 1. Schematic diagram of the apparatus. The y axis
points into the page.
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stant in time. With these rescalings (dropping the bars),
Eq. (1) becomes [13]

h,+h2h,+V-[h3VV?h —cot(a)(3Ca)!*h3Vh]=0. (3)

It is useful for what follows to interpret the terms in Eq.
(3): h2h, is a convective term and makes the velocity of
the profile depend quadratically on its height. The two
other terms are diffusive and tend to flatten the profile.
The inner region is a consequence of the competition be-
tween these two types of terms, as the convective term
tends to form a shock, and the diffusive terms smooth it
out. The “bump” is a consequence of the balance be-
tween curvature gradients and viscous stresses.

Now I consider the instability of this profile. Imagine
an interface with a shape initially independent of the y
direction, perturbed by a sinusoidal perturbation of wave-
length A. The equiheight lines of such a perturbation are
shown in Fig. 2. The bold line represents the maximum
height of the profile. The crucial point is that under such
a perturbation, the diffusive terms cause fluid to flow in
the direction transverse to the main flow [14], decreasing
the height of the fluid at positions 4 and C, the troughs
[15]. The height at position 4 (C) is then less than the
height at position B, the tip. Since the velocity increases
like 42, the tip (B) then moves faster than the troughs
(A4,C), resulting in the formation of a finger. It is impor-
tant to note that these transverse flows will only be in-
duced for sufficiently long wavelength perturbations, for
the #3VV?h term also tends to decrease the additional
curvature of the interface in the x -y plane, induced by the
perturbation.

This picture of the instability suggests a reason for the
difference in finger shapes between partial-wetting and
complete-wetting fluids. A partial-wetting fluid has a
finite equilibrium contact angle. When the height of the
trough decreases enough so that the contact angle is
equal to its equilibrium value, the velocity of the trough
must be zero. If on the other hand, the equilibrium con-
tact angle is zero, then the tip and trough can move down
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FIG. 2. Equiheight lines of the perturbed interface. 4 and C
are trough positions, and B is the position of a tip. The bold
line represents the maximum height of the profile. The upper-
most line represents the contact line. Fluid flows “downhill,”
from points A4 and C to point D.
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the plane together; in this case, Eq. (3) should capture the
essential dynamics of the fluid. The dependence of finger
shape on contact angle has been previously noted by Silvi
and Dussan [3] and Jerrett and de Bruyn [5].

Several semiquantitative consequences can be drawn
from this picture of the instability. First, I consider the
growth of the finger with time. As emphasized by Troian
et al. [7], it is proper to consider the initial development
of the instability in the frame of reference of Eq. (3).
There are two regimes: Shortly after the onset of the in-
stability, the growth of the finger is dominated by the flux
of fluid, ®, from the troughs ( 4,C in Fig. 3) to the tip (B
in Fig. 3). A superposition of the flow profiles at 4 and B
in this regime is shown in Fig. 3. The mass M of the
finger has the time dependence M ~®L (t), where L (¢) is
the finger length. Since the height is 1 in units of Eq. (3),
M ~AL(t), and thus L ~BL, so that the early time
growth of the finger is exponential. This regime will end
when L (t) is of order of the thickness W of the “bump”
[16]. At later times, the height of the fluid at the tip and
the trough of the finger remains constant, with the tip
higher than the trough. Since the velocity of the flow
varies like h2, there is a constant velocity difference be-
tween the tip and the trough. Thus, the finger length in-
creases linearly in time. These time dependences of the
finger length were measured by de Bruyn [6]. In his data,
the transition between the two regimes occurs around
5-10 (in units of /), depending on the inclination angle.
de Bruyn does not report the thickness of the “bump” in
his experiments; however, the computed solution of
Goodwin and Homsy with a=45° [10] has a “bump”
with W ~6. The variation in de Bruyn’s transition
lengths with inclination angle is probably due to the fact
that, in general, W is a weak function of a when ex-
pressed in units of /.

Now I estimate the growth rate, and the most unstable
wavelength of the pattern. From above, the growth rate
of the fingers is B(A)~®/A. The flux P is the y com-
ponent of the flux in Eq. (3). Dimensional analysis on this
flux gives the estimate for (1)

cot(a)(3Ca)!”3
(A/2)A

1 1
WAIMA/2)  AMA/2)Y

B(A)=2

4

The most unstable mode A* is obtained by maximizing
B(A). This gives

<+ L

\/

FIG. 3.
times.

Superposition of tip and trough profiles at early
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2

(A*p= S . (5)
[14cot(a)(3Ca)/*w?]

As above, W is about 6; in de Bruyn’s experiments,

cot(a)(3Ca)!”*~1, so that Eq. (5) gives A* ~3. Using (4),

the growth rate is $~0.2. These results are the same or-

der of magnitude as the measurements of de Bruyn [6],

who finds that A* ~9, and 8~0. 1.

These results demonstrate that the simple physics pro-
posed here lead to reasonable estimates for the measured
quantities. Furthermore, the results show that the mea-
sured quantities A* and 8 depend on the dimensionless
parameter (3Ca)!/3cot(a) neglected by Troian et al. [7].
At large angles where (3Ca)!”*cot(a) is negligible, I re-
cover Troian et al.’s result that the most unstable wave-
length is constant in units of /. This is true because at
large angles, W becomes independent of a. However, at
the small angles accessible to experiments, the measured
quantities depend on the inclination angle, even when ex-
pressed in units of I. In fact, (5) implies that the dimen-

sionless wavelength of the pattern A* decreases, and the
dimensionless growth rate 3 increases, at small values of
a [17]. Jerrett and de Bruyn [5] have shown experimen-
tally that the wavelength decreases as a function of a for
partially wetting fluids. de Bruyn’s experiments [6] on
silicone oil also seem to suggest that A* decreases at small
angles. Fewer experiments have measured 8 at small an-
gles. de Bruyn’s experiments seem to suggest that 8 actu-
ally decreases at small angles. More work on this point is
necessary.
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